
Cost-aware Cloud Service Request Scheduling for SaaS Providers  1 

Zhipiao Liu, Shangguang Wang*, Qibo Sun, Hua Zou, Fangchun Yang 2 

State Key Laboratory of Networking and Switching Technology 3 

Beijing University of Posts and Telecommunications 4 

Beijing 100876, China 5 

{liuzp, sgwang, qbsun, hzou, fcyang}@bupt.edu.cn 6 

∗Corresponding author: sgwang@bupt.edu.cn 7 

Abstract As cloud computing becomes widely deployed, more and more cloud services are 8 

offered to end users in a pay-as-you-go manner. Today’s increasing number of end user-oriented 9 

cloud services are generally operated by SaaS (Software as a Service) providers using rental 10 

virtual resources from third-party infrastructure vendors. As far as SaaS providers are concerned, 11 

how to process the dynamic user service requests more cost-effectively without any SLA violation 12 

is an intractable problem. To deal with this challenge, we first establish a cloud service request 13 

model with SLA constraints, and then present a cost-aware service request scheduling approach 14 

based on genetic algorithm. According to the personalized features of user requests and the current 15 

system load, our approach can not only lease and reuse virtual resources on demand to achieve 16 

optimal scheduling of dynamic cloud service requests in reasonable time, but also can minimize 17 

the rental cost of the overall infrastructure for maximizing SaaS providers’ profits while meeting 18 

SLA constraints. The comparison of simulation experiments indicates that our proposed approach 19 

outperforms other revenue-aware algorithms in terms of virtual resource utilization, rate of return 20 

on investment and operation profit, and provides a cost-effective solution for service request 21 

scheduling in cloud computing environments. 22 

Keywords: Cloud computing; Cloud service; Cost; SaaS; Service request scheduling; Virtual machine. 23 

1. Introduction 24 

As a promising computing paradigm, cloud computing has drawn extensive attention from 25 

academia and industry in recent years. Cloud computing is formally defined as an IT resource 26 

supply model which provides users with configurable computing resources (e.g., servers, storage, 27 

applications) over network in the form of services [1,2]. These services are made available on a 28 

subscription basis using pay-as-you-use model to cloud users, regardless of their location. 29 

Nowadays almost every well-known IT company, including Amazon, Google, IBM and Salesforce, 30 

has introduced related cloud services. 31 

Compared with traditional desktop computing, cloud computing presents many advantages, 32 

such as better resource utilization, rapid elasticity, higher power conservation and economies of 33 

scale, which can save the up-front investment of enterprise information system and reduce the 34 

daily operation and maintenance costs significantly in the long run. 35 

With the advancement of cloud computing technologies including virtualization, security, SOA 36 

(Service-Oriented Architectures) and high bandwidth network access, it is becoming a trend that 37 



large numbers of existing business applications from companies and institutes will be migrated 38 

into clouds and deployed as cloud services due to the above-mentioned benefits [3,4]. Therefore, 39 

more and more cloud services hosted by cloud service providers (e.g., SaaS providers) will be 40 

provided to interested end users, which are deployed on virtual machine (VM) instances rented 41 

from one or more third-party infrastructure vendors. Hereafter, the terms cloud service provider 42 

and SaaS provider are used interchangeably in the context of this paper. 43 

As a result, a three-tier cloud service provision structure has been formed involving three 44 

typical parties: end user, cloud service provider and cloud infrastructure vendors [5, 6]. An end 45 

user is the cloud consumer which represents a person or organization that maintains a business 46 

relationship with, and requests the cloud service from a business service provider [7]. A cloud 47 

service provider such as Force.com is the business service provider which deploys and runs the 48 

business applications on a rented cloud infrastructure so that the cloud services are offered to end 49 

users through network access. A cloud infrastructure vendor such as Amazon is the entity which 50 

provisions virtual resources such as processing, storage, networks, and other fundamental 51 

computing resources to clients in a pay-as-you-go manner. 52 

The service provision procedure can be briefly described as follows: 53 

� Above all, the end user browses the service catalog from a SaaS provider and sends the 54 

appropriate service request to the cloud service provider. 55 

� The cloud service provider accepts the service request of end user and applies to the 56 

underlying cloud infrastructure vendors such as Amazon for virtual resources on demand. 57 

� The cloud infrastructure vendor responds to the resource lease request, and then allocates 58 

VM instances to the corresponding SaaS provider for processing the end user request. 59 

� Finally, the SaaS provider charges end user for processing his/her service request and 60 

pays the cloud infrastructure vendor for renting VM instances to deploy service capacity. 61 

The involved parties and their interaction can be illustrated in Figure 1. 62 

 63 

Figure 1 Three-tier cloud service provision structure 64 

In this paper, we only care about the interests of end users and SaaS providers. From the end 65 

user’s viewpoint, a service request for a business application is always accompanied by SLA 66 

(Service Level Agreement) constraints specifying the performance requirements [7]. From the 67 

viewpoint of a SaaS provider, the operational goal is to lease as little virtual resource as possible 68 

while still ensure that the cloud service is provisioned at the expected service levels to end users. 69 

The profits of SaaS providers derive from the margin between the revenue generated from cloud 70 

end users and the rental cost of infrastructure. 71 



As can be seen from Figure1, the cloud service provider plays an important role in cloud 72 

service provision procedure. For a SaaS provider, how to schedule virtual resources leased from 73 

third party infrastructure to process dynamic cloud service requests more cost-effectively without 74 

violating the SLA constraints while maximizing operational profit is an intractable problem. On 75 

the one hand, service request scheduling strategies in cloud computing environments should 76 

balance service performance and the cost of leasing resources to satisfy the objectives of both end 77 

users and SaaS providers. On the other hand, it must also recognize and reflect the different 78 

options for computing resources (e.g., multiple infrastructure vendors offer many types of virtual 79 

machines, each with different capabilities at a different price) [8]. Furthermore, the current pricing 80 

model of virtual resources specified by infrastructure vendors should be taken into consideration. 81 

All these factors make cost-effective service request scheduling a challenging problem to solve in 82 

cloud computing scenario. 83 

In order to deal with this challenge, we stand in the position of cloud service providers and 84 

propose an effective solution to achieve optimal cloud service request scheduling. Above all, a 85 

cloud service request model with SLA constraints is established. And then, based on the request 86 

model, we present a novel optimization scheduling approach, i.e., cost-aware service request 87 

scheduling based on genetic algorithm (called CSRSGA). Taking into consideration the 88 

divisibility feature of cloud service requests and the elasticity of SLA, CSRSGA intends to 89 

maximize the overall infrastructure leasing cost while still ensuring that the service performance 90 

can meet SLAs expectation of end user requests. Given the fluctuating service request volume and 91 

the huge searching space of virtual resource pool, genetic algorithm is adopted by our approach to 92 

improve the efficiency of problem solving and respond to users’ requests in reasonable time. In 93 

order to verify the effectiveness of our proposed scheduling approach, extensive simulations are 94 

conducted based on Amazon EC2 on demand instances. The experiment results show that 95 

CSRSGA outperforms other revenue-aware algorithms in terms of virtual resource utilization, rate 96 

of return on investment and operation profit. 97 

The main contributions of our work are listed as follows: 98 

� We develop a cloud service request model with SLA constraints based on previous work 99 

to identify the main concerns of both cloud consumers and cloud service providers. 100 

� On the basis of the divisible features of the user request and the current system load, we 101 

propose an effective service request scheduling approach for maximizing profit by cost 102 

and revenue optimization without any SLA violation, and thus reach win-win solution 103 

which will help to build a long-term profitable cloud service market. 104 

� As a parallelizable modern intelligent optimization algorithm, genetic algorithm is 105 

adopted for achieving optimized request dispatching in reasonable time by incorporating 106 

the heterogeneity of virtual resource (e.g., VMs) in terms of their configuration, 107 

performance and price. 108 

The rest of the paper is organized as follows: Section 2 introduces the prior work related to 109 

service request scheduling; Section 3 presents the cloud service request model with SLA 110 

constraints and the revenue function of cloud service providers; Section 4 describes our cloud 111 

service request scheduling approach; Section 5 presents the simulation results and comparative 112 

analysis; Section 6 concludes the paper and proposes future work. 113 



2. Related Work 114 

Earning profit is the principal driving force for service providers, and SLA is the focus of users’ 115 

attention. Therefore, much research has been done related to the two themes in distributed 116 

computing environment. 117 

In [9], a computational economy driven scheduling system called Libra was presented to 118 

support allocation of resources based on the users’ quality of service requirements, which offers 119 

market-based economy driven service for managing batch jobs on clusters by scheduling CPU 120 

time according to user-perceived utility, but pays little attention to system performance. In [10], a 121 

sigmoidal utility model was introduced, and several allocation policies for resource allocation on 122 

computational grids were proposed. The authors of [11] focus on the profit-based scheduling and 123 

admission control policies to address the resource allocation problem from the viewpoint of 124 

resource providers, but ignore the user side. 125 

In addition, there have been several recent related efforts in the area of service request 126 

scheduling in cloud computing scenarios. The authors of [5] introduce utility theory leveraged 127 

from economics, investigate the interaction of service profit and customer satisfaction, but the 128 

proposed scheduling algorithms based on resource bid do not respond to end users’ requests until 129 

the next time interval. Due to the fact that the bid time interval cannot be too short in practice, the 130 

long waiting time increases the probability of SLA violation in cloud computing environment, 131 

where cloud consumers need to be served immediately, and thus reduces significantly the profits 132 

of cloud service providers. In [6], a pricing model using processing-sharing was developed, and 133 

two profit-driven scheduling algorithms for composite services in clouds were proposed. In [12], a 134 

decentralized economic approach for dynamically adapting the cloud resources of various 135 

applications considering the varying workloads or failures was presented. The authors of [13] 136 

propose resource allocation algorithms for SaaS providers who want to minimize infrastructure 137 

cost and SLA violations. However, the scheduling algorithms proposed in the above three papers 138 

cannot completely eliminate the occurrence of SLA violation event. 139 

Our proposed request scheduling approach differs from the prior work mainly in the cloud user 140 

request model we introduce, and the optimized scheduling strategy based on the personalized 141 

feature of user requests and dynamic resource reuse. Our approach builds and dynamically 142 

maintains a virtual resource pool, achieves optimal request scheduling in reasonable time, and thus 143 

significantly improves resource utilization and reduces operational cost to increases profits of 144 

cloud service providers while meeting end users’ performance requirements, which is absent from 145 

most previous works in cloud computing environments. 146 

3. User Request Modeling 147 

In order to design a cost-effective cloud service request scheduling algorithm, a reasonable service 148 

request model has to be established firstly in order to quantify the critical SLA property 149 

constraints. 150 

A SLA is a contract between a service provider and a user, which is a collection of service 151 

level requirements that formally specify the promised service performance and the corresponding 152 

revenue (or penalty). Generally speaking, SLAs include such predefined properties as response 153 

time, user budget, reliability, remedies for performance failures, etc. [7]. 154 



In cloud computing environments, SaaS providers need SLAs to regulate user behavior for 155 

achieving expected benefits. From a cloud user’s point of view, it is also necessary to signing a 156 

legal contract covered SLA constraints to specify the technical performance requirements fulfilled 157 

by a cloud service provider [7]. Failure to achieve these performance objectives over a period of 158 

time binds the SaaS provider to pay a penalty to the cloud user based on the clauses defined in the 159 

SLA contract. For example, if the cloud user gets the corrective responsive result within the 160 

promised time from the corresponding SaaS provider, then the user arranges payment for the 161 

service provisioned accordingly. However, if the user request is not addressed correctly on time, 162 

then the SaaS provider will incur penalty. Therefore, SaaS providers always manage to reduce 163 

SLA violations to maximize its net profit, that is, the total fees (e.g., revenue) charged by the SaaS 164 

provider to its customer minus the cost for renting resource from the infrastructure vendors and 165 

the penalties for violating SLA constraints agreed by both parties. 166 

In this paper, we focus on SLA constraints on request processing time (i.e., the time elapsed 167 

from accepting a user service request to completion) and cost (i.e., the user’s budget for 168 

processing this request), which are directly associated with the profit of SaaS providers and cloud 169 

consumers. In addition, we assume that every request of end user is subject to corresponding SLA 170 

constraints. 171 

According to the above introduction, centered on the two main time and cost constraints, we 172 

quantify the other SLA properties related to profit, and then model the user service request 173 

request  as a five-parameter tuple as follows: 174 

( , , , , )
s

request budget t mbdt deadline pr=                       (1) 175 

� budget : The maximum amount of currency that the user is willing to pay for the request 176 

to be completed, i.e., the maximum revenue acquired by the SaaS provider for processing 177 

this user request. 178 

� 
s

t : The standard execution time required to finish the request by a standard VM instance. 179 

� mbdt : The maximum processing delay without any penalty incurred by service providers. 180 

In order to get the maximum revenue, the SaaS provider should try to complete the 181 

request processing before this time point. Otherwise, revenue loss is inevitable for this 182 

cloud service provider. 183 

� deadline : The processing time upper limit. If the user request is finished after this limit, a 184 

SLA violation event occurred. The service provider will compensate the user for failing to 185 

meet the deadline of this request. The amount of compensation depends on the delay time, 186 

which can be calculated based on the above mentioned two time constraints specified in 187 

SLA and the actual processing time. 188 

� pr : Penalty rate. A greater penalty value means that the user requirement in term of 189 

request processing time is more demanding. If the actual processing time is greater than 190 

the mbdt  value of this user request, the reduced revenue should be calculated based on 191 

the penalty rate, which establishes a correlation between the request processing time and 192 

the revenue of SaaS providers. 193 

For simplicity, we model the SLA violation penalty rate as linear [14], as shown in Figure 2. 194 



 195 

Figure 2 Cloud service request model with SLA constraints 196 

According to the above established cloud service request model, we can easily get the revenue 197 

function of service providers. 198 

,

,

,

a

a

a

budget t mbdt

revenue budget delay pr mbdt t deadline

delay pr t deadline

≤
= − ∗ < ≤
 − ∗ >

                 (2) 199 

� revenue : The revenue of the cloud service provider after the user request processing is 200 

completed. 201 

� 
a

t : The actual execution time of this user request. 202 

� delay : The execution delay introduced to calculate the incurred penalty of service 203 

providers, which can be figured out as follows: 204 

,

,

a a

a a

t mbdt if mbdt t deadline
delay

t deadline if t deadline

− < ≤
=  − >

                     (3) 205 

As a result, we can obtain the final revenue of the cloud service provider for processing 206 

this user request by formula (2). 207 

4. Our Proposed Cloud Service Request Scheduling Approach 208 

In order to meet diverse market needs, the popular infrastructure vendors such as Amazon and 209 

Microsoft offer multiple types of VM instances, which have different configurations, different 210 

capacities at different prices. From the viewpoint of SaaS providers, due to the considerable 211 

diversity in performance and prices of different types of instances, processing a request on 212 

different types of VM instances results in different processing time, and hence different profits. 213 

For example, as the leading cloud infrastructure provider, Amazon EC2 currently offers many 214 

on-demand VM instance types that differ in computing/memory capacity, OS type, pricing scheme 215 

and geographic location for rent on an hourly basis, such as standard VMs (including Small, Large 216 

and Extra Large instances) designed for most types of applications, high-CPU VMs for compute 217 

intensive services and high-memory VMs for data storage services [5,15]. 218 

In this context of resource heterogeneity, processing a user request on different types of VM 219 

instances results in different processing time and revenue, and hence different profits because of 220 

the considerable discrepancy in performance and prices of different types of instances. It is in the 221 

cloud service provider's interests to determine that what types of VM instances and how many 222 



instances are leased to minimize infrastructure cost and optimize operational profit. Therefore, it is 223 

particularly important to design a cost-aware service request scheduling algorithm for processing 224 

highly dynamic user requests in the context of resource heterogeneity. Next, we first introduce a 225 

parameter named virtual machine capacity quantity ratio, and then describe our proposed 226 

cost-aware cloud service request scheduling approach in detail. 227 

4.1 Capacity Quantity Ratio 228 

To quantify the performance difference of different types of VM instances, we introduce the 229 

following conception based on the work of reference [5]. 230 

Definition 1 Virtual machine capacity quantity ratio: let rw
i
and rw

s
denote the request 231 

workload that a standard VM instance 
s

vm and a type i VM instance 
i

vm  can process in a time 232 

unit respectively. The virtual machine capacity quantity ratio denoted by 
i

qr is defined as follows: 233 

/
i i s

qr rw rw=                                    (4) 234 

Based on this parameter, the time of processing the same user request on different types of VM 235 

instances can be figured out. The 
i

qr  value of various instance types can be determined through 236 

profiling and benchmarking. 237 

If the required processing time of certain user request on a standard instance is 
s

t , then the 238 

required processing time on a type i  instance can be calculated as follows: 239 

/
i s i

t t qr=                                       (5) 240 

where the greater value of 
i

qr means more powerful processing capacity of this instance type, and 241 

hence shorter processing time for the same user request. 242 

4.2 Proposed Scheduling Algorithm-CSRSGA 243 

SaaS providers run their cloud services to profit from users using leased virtual machine resources 244 

from cloud infrastructure vendors. In this paper, we only consider the classical On-Demand 245 

Instances provision pattern such as Amazon EC2 on demand instances, which is more popular 246 

compared to Reserved Instances and Spot Instances. On-Demand provision pattern enable SaaS 247 

providers to pay for compute capacity by the time unit with no long-term commitments. In other 248 

words, SaaS providers do not have to reserve VMs in advance, and only apply for them when 249 

needed. 250 

In this pattern, a running virtual machine instance is charged by the time it runs at a flat rate 251 

per time unit. Generally speaking, pricing is per instance-hour consumed for each instance, from 252 

the time an instance is launched until it is terminated. Each partial instance-hour consumed will be 253 

billed as a full hour [8]. 254 

In addition, we only focus on the divisible user service requests in the context of this paper, i.e., 255 

the requested load that can be continuously divided into multiple independent subtasks without 256 

precedence constraints between them. In fact, many typical cloud service related to big data sets, 257 

such as video encoding, image processing and biological sequence search (BLAST, for example), 258 

are all divisible [16,17]. Applications on platforms BOINC and distributed.net also fulfill the 259 

divisibility and independence of load grains assumptions [16].  260 

Finally, without loss of generality, we assume the operational cost of SaaS providers only 261 

consists of the rental expense of VM instances and the penalties for violating SLA constraints. 262 

On the basis of the above statements, we present CSRSGA (Cost-aware Service Request 263 

Scheduling based on Genetic Algorithm) to achieve optimized request scheduling by addressing 264 



the problem of leasing virtual resources, selecting an optimal subset of those resources, and 265 

mapping of user request subtasks onto selected resources. Taking into account the divisibility of 266 

user requests and the current system load, combined with the pricing model of on demand 267 

instances, CSRSGA is designed to maximize the profit by minimizing the cost of leasing resource, 268 

which depends on the number and type of initiated VM instances. Based on genetic algorithm, 269 

CSRSGA dispatches the multiple divided subtasks to the optimal VM combination in the dynamic 270 

resource pool composed of leased VM instances, and thus significantly reduces operational costs 271 

of cloud service providers without any SLA violation. It should be noted that the CSRSGA 272 

algorithm is only applicable to those divisible cloud service applications, especially those batch 273 

processing applications based on large data sets, instead of such transaction-centric cloud service 274 

as CRM or ERP. 275 

The procedures of CSRSGA can be illustrated in Figure 3. 276 

 277 

Figure 3 The procedure of CSRSGA 278 

Next, we describe every step of CSRSGA scheduling approach in detail. 279 

1)  Accepting user request. As an important part of our cloud service resource provision  280 

platform, the Cloud Service Request Scheduling System is responsible for running the CSRSGA 281 

algorithm and receiving the user requests as input derived from access control model, which 282 

takes charge of user authentication and request access. In this paper, we assume that the 283 

request’s execution time 
s

t is known [5,18]. 284 

2)  Dividing request experimentally. CSRSGA aims to make full use of the divisibility feature  285 

of user requests and divides every request into s independent homogeneous subtasks (i.e., these 286 

subtasks have equal execution time on the same VM instance) for parallel processing, so that the 287 

unexpired idle VM instances rented from infrastructure vendors can be reused effectively. 288 

The candidate VM instance type set used to process the user service requests is denoted by 289 



1 2
{ , ,..., }

l
CVMT c c c= . 290 

Let /
l h

s t deadline=    , which is the minimum number of VM instances used for executing 291 

the user request so as not to violate the deadline constraint specified in the corresponding cloud 292 

service request model, and /
u l

s t mbdt=    , which is the maximum number of VM instances 293 

used for executing the user request to obtain maximum revenue, i.e., the budget value specified 294 

in the corresponding request model, where 
h

t /
l

t  is the time required to finish the request by 295 

the VM instance with highest/lowest performance in CVMT , which can be figured out by 296 

formula (4) and (5). 297 

Above all, according to the SLA constraints in the user request model, initializing the number 298 

of divided subtasks s , and let 
l

s s= . Then, repeating step 3 to step 5) until 
u

s s>  to determine 299 

the most profitable number of divided subtasks. 300 

3)  VM filtering. The primary goal of this step is to reduce the number of candidate VM  301 

instances used to execute subtasks to narrow down the problem search space. 302 

Let 
1 2

{ , ,..., }
n

VRP vm vm vm= , where VRP is the resource pool consisting of unexpired VM 303 

instances leased for processing user requests from third-party infrastructure vendors, n  is the 304 

ID number of the VM instance in the pool. 305 

Traversing orderly VRP  (initially empty) to find out all the VM instances meeting the 306 

following three conditions: 307 

a) Status requirement: unexpired and idle, because only those instances satisfying this 308 

requirement are likely to accept new subtask right now. 309 

b) Type requirement: /
k

t s deadline< , 1,2,...,k l=  , where 
k

t  is the time required to finish 310 

the request by a 
k

c type VM instance. The processing time of the subtask executed by this 311 

VM instance does not violate the promised deadline constraint only when the type of 312 

candidate VM instance meets this requirement. 313 

c) Time requirement: /
k

rmrt t s> , where rmrt  is the remaining lease time of this instance. 314 

If the candidate instance cannot satisfy the time constraint, SLA violation will occur due to 315 

VM instance expiry. 316 

Those qualified VM instances form a valid resource set denoted by
1 2

{ , ,..., }
m

VRS vm vm vm= , 317 

where m  is the number of instances in the set, and m n≤ . If m s< , go to step 4), or else 318 

go to 5). 319 

4)  Leasing VM instances. When m s< , leasing new most profitable VM instances from  320 

infrastructure vendors to join the valid resource set VRS for parallel processing. Lease principle 321 

is to choose the most profitable VM instances per time unit in terms of this user request, and the 322 

lease number is s m− . 323 

Let _profit ptu denotes the estimated profit per time unit obtained by processing s  324 

subtasks of the request with s VM instances of type 
k

c , which can be calculated as below: 325 

_ ( ) / ( / )
k k k k

profit ptu revenue uc t t s= − ∗                      (6) 326 

where 
k

uc is the rent cost per time unit of a type 
k

c VM instance, and /
k

t s  is the processing 327 

time of the user request which is equal to the execution time of every subtask due to the 328 

homogeneity of all subtasks of the same request. 
k

revenue  is the expected revenue, which can 329 

be figured out based on the request processing time using formula (2). 330 

Firstly, calculating all the estimated profits per time unit of different instance types in the 331 



valid resource set which must satisfy the type requirement in 3) so that the deadline constraint 332 

of this request is not violated. 333 

Secondly, finding out the most profitable instance type which has maximum estimated profit 334 

per unit time through comparison and leasing s m−  instances to join the valid resource set 335 

VRS . The lease period is ( / ) /
k u

t s t   , where 
u

t  is the pricing time unit of the instance type 336 

specified by the infrastructure vendor, usually hour. 337 

5)  Choosing the optimal VM combination. The optimal VM combination consists of s  VM  338 

instances from the valid resource set, which enables the SaaS provider to obtain the maximum 339 

expected profit for processing the s subtasks of the user request in parallel. The expected profit 340 

exprofit  is the expected revenue exp revenue  minus the expected cost exp cos t . This 341 

optimization problem can be expressed as the following binary integer programming problem. 342 

Max exp cosexprofit exprevenue t= −                     (7) 343 

subject to 344 

1 1
cos * *

s n

ij j iji j
ex t x uc t

= =
=∑ ∑                        (8) 345 

1
1, 1, 2,...,

s

iji
x j m

=
= =∑                            (9) 346 

1
1, 1,2,...,

n

ijj
x i s

=
= =∑                            (10) 347 

where s  is the number of subtasks derived from the same request, and m  is the number of 348 

VM instances in the valid resource set. 
ij

x =1 denotes that the subtask i  is executed on the 349 

instance j , 0 otherwise. 
j

uc  is the rent cost of instance j  per time unit. 
ij

t is the required 350 

execution time of subtask i run on the instance j . Supposing that 
k

c  denotes the VM type of 351 

instance j , we can get /
ij k

t t s= , and 
k

t  is the processing time of the request using a type 352 

k
c instance. The formula (9) ensures that a VM instance can only accept a subtask at the same 353 

time. The formula (10) ensures that a subtask can only be allocated to an instance for execution. 354 

The expected revenue exprevenue  can be calculated using formula (2) according to max{ }
ij

t , 355 

because the processing time of this user request is the maximum execution time of all subtasks. 356 

For the public cloud service operated by a SaaS provider, especially when the service 357 

becomes extremely popular all at a once, the cloud service request scheduling algorithm should 358 

respond to the high volume of user requests as soon as possible to reduce the probability of SLA 359 

violation. Therefore, genetic algorithm is introduced to accelerate the optimization problem 360 

solving process. 361 

As a modern intelligent optimization algorithm, genetic algorithm has been widely used as an 362 

effective meta-heuristics for obtaining high quality solutions for a broad range of combinatorial 363 

optimization problems including the task scheduling problem. An important merit of genetic 364 

search is that its inherent parallelism can be exploited to further reduce its running time [19]. 365 

The solving procedure of optimal VM combination problem is shown in Figure 4. In the 366 

context of this optimization problem, the fitness function is defined as the expected 367 

profit exprofit , and every VM combination from the valid resource set is modeled as a 368 

chromosome (e.g., individual). The length of every chromosome is equal to m , which is the size 369 



of the valid resource set. Binary encoding is adopted, and every chromosome is a string of bits, 370 

0 or 1. Every bit in the chromosome is a gene, which is associated with a VM instance from the 371 

valid resource set. 1 denotes that the corresponding instance is selected and 0 otherwise. As for 372 

every individual, it must conform to the sum constraint of gene value as below, 373 

1
_

m

ii
gene value s

=
=∑ ,                            (11) 374 

where _
i

gene value  is the bit value in the individual. 375 

This algorithm is started with an initial population of feasible solutions randomly generated 376 

based on first-fit algorithm. Every individual in initial population must satisfy the above sum 377 

constraint, or else is considered as unfeasible solution. All of the individuals in the population 378 

are evaluated based on their fitness value, with a larger fitness value being a better mapping. 379 

Then, by applying selection, crossover and mutation operators, the best solution with maximum 380 

value of the fitness function can be found after some generations [19]. The s  VM instances 381 

identified by decoding the best solution are the optimal VM combination of the current valid 382 

resource set in terms of this division scheme of this user request. 383 

 384 

Figure 4 The optimal combination solving procedure 385 

6)  Dispatching request. Let 
max

s  be the most profitable number of subtasks among all the  386 

division schemes in terms of this user request, and let the optimal VM combination composed of 387 

s  instances be denoted OVMC , which is a subset of the valid resource set defined in the 388 

previous step. Then 
max

s and OVMC can be determined by comparing the maximum expected 389 

profits of different request division schemes (i.e., different s ). Finally, the user request is 390 

divided into 
max

s  subtasks, and dispatched to the optimal VM combination OVMC  for 391 

parallel execution. 392 

The time complexity of CSRSGA algorithm mainly consists of three parts. The complexity of 393 

VM filtering is ( )O n , where n  is the size of VRP . For the initialization of GA, the algorithm 394 

performs first-fit on a random permutation of VMs obeying the sum constraint of gene value. 395 

The complexity of initialization is ( log )O N m m∗ ∗ , where N  is the initial solution size and 396 

m  is the size of VRS . The algorithm adopts classical roulette selection operator, and the time 397 

complexity of iteration operation is ( )O N G m∗ ∗ , where G  is the number of generations. 398 

Therefore, the complexity of CSRSGA is ( ( ) ( log ) ( ))S O n O N m m O N G m∗ + ∗ ∗ + ∗ ∗ , which 399 

yields a polynomial execution time, where S  is the times of request dividing. 400 

In this section, we describe our scheduling approach for provisioning virtual resource on 401 

demand. The proposed approach exploits genetic algorithm to select the most profitable VM 402 

combination for processing user requests in reasonable time, and maximize a SaaS provider’s 403 



profit by reducing the infrastructure cost and ensure that all requests are finished before their 404 

deadlines. 405 

5. Performance Evaluation 406 

In order to verify the effectiveness of CSRSGA algorithm proposed in this paper, we construct the 407 

following simulation experiments. Above all, we introduce the experiment setup, and then present 408 

the performance metrics for evaluation. Finally, we compare CSRSGA with three revenue-aware 409 

baseline algorithms to demonstrate the benefits of our proposed approach. 410 

5.1 Experiment Setup 411 

In our experiment, we model 1000 cloud service requests with different SLA constraints. Every 412 

user request is divisible and arrives in a Poisson process. The SLA parameters of different user 413 

requests are different. According to the budget constraint budget  in the user request model, user 414 

requests are divided into two categories: high budget class and low budget class. 20% of the 415 

requests belong to high budget class. 80% of the requests belong to low budget class. The budget 416 

values in each category follow a normal distribution. The category of next user request is random. 417 

The execution time constraint 
s

t  specified in user request model follows an exponential 418 

distribution. The two time constraints mbdt  and deadline  are generated based on the execution 419 

time 
s

t . Here we let 
s

mbdt tα= ∗ ,
s

deadline tβ= ∗  ,α β< . The last constraint pr is determined 420 

jointly by the three property constraints budget , mbdt  and deadline . 421 

The candidate instance set in this paper is composed of three types of Amazon EC2 422 

On-Demand Instances, i.e., Small, Large and Extra Large (Windows Usage, California, US) [5]. 423 

The experiments are based on the capacity quantity ratio of the candidate instance types obtained 424 

by profiling and benchmarking. All the simulations are conducted on the same computer with Intel 425 

Core2 Duo CPU 2.1 GHz processor, 2.0 GB of RAM, Windows XP Professional SP3, and 426 

MATLAB7.11.0. The simulation program is written in Java based on 427 

eclipse-java-indigo-SR2-win32, and the runtime environment is JDK 1.6.0_25. 428 

5.2 Performance metric 429 

A SaaS provider leases VM instances from third-party infrastructure vendors to handle user 430 

requests. Under the circumstances, the type and number of initiated instances, along with their 431 

utilization rate are all associated with the operational cost and profit of the SaaS provider. 432 

Therefore, we focus on the following performance measurement metrics to evaluate our approach: 433 

� Number of leased instances: The number of on demand VM instances leased for processing 434 

user requests. Because the rental cost of instances is calculated based on time unit, here the 435 

number of initiated instances is counted according to instance-time unit. For example, if m  436 

instances are leased for n  time units, then the number of initiated instances is m n∗ . 437 

� VM utilization rate: The total time used for processing user requests divided by the total lease 438 

time, i.e., the proportion of time that instances are busy processing requests. 439 

� Operational profit: The net profit of the SaaS provider obtained from operating cloud services, 440 

which can be calculated using the formula cosprofit revenue t= − , where revenue is the total 441 

revenue charged for processing requests, cos t  is the total cost for renting VM instances. 442 



� RRI: The rate of return on investment, which denotes the investment value. It can be 443 

calculated by using the formula / cosRRI revenue t= . 444 

5.3 Simulation results 445 

We evaluate our algorithm through comparison with three baseline algorithms introduced by [5] 446 

that use homogeneous instances, RFS, RFL and RFEL, which always choose Small, Large and 447 

Extra Large on demand instances from the candidate VM instance type set to process user requests 448 

respectively. The three algorithms all guarantee that the user request be completed before the end 449 

of the property constraint mbdt  by leasing enough new instances to maximize the revenue of 450 

SaaS providers, and hence they can be defined as revenue-aware scheduling algorithms. 451 

In the simulation, the population size and the number of iteration are set to be 20 and 30 452 

respectively. The crossover rate and the mutation rate are set to be 100% and 10% respectively. 453 

The average execution time is about 1.5 second, which is mainly determined by the SLA property 454 

constraints of user request and request arrival rate. Taking into account our simulation program is 455 

far from optimal and the inherent parallelism of genetic algorithm, the execution time can be 456 

further reduced. All approaches are run for 10 times in terms of different user request data sets and 457 

all results are reported, on average. 458 

5.3.1 Comparison on number of leased instances 459 

We measure the number of leased VM instances of CSRSGA and compare it with the number of 460 

instances leased through three baseline algorithms in Figure 5. Our proposed approach leases 461 

fewer instances than RFS and RFL, but leases a little more than RFEL algorithm. The reason is 462 

that our algorithm takes the divisibility feature of requests into account and reuses those idle 463 

instances in the valid resource set as far as possible. Only when the current idle instances cannot 464 

meet the subtask processing requirement do we rent the most profitable instances on demand. On 465 

the contrary, the baseline algorithms always rent new instances for processing each new request 466 

ignoring resource reuse. As for RFEL, it always rent the most powerful VM instances (Extra Large) 467 

to handle user requests, and hence initiates the least instances. 468 

 469 

   Figure 5 The number of leased instances  470 

5.3.2 Comparison on VM utilization 471 

As is shown in Figure 6, CSRSGA achieves higher resource utilization (approximately 80% in 472 

terms of our simulated request data set), which is mainly because that our algorithm always 473 

manages to reuse the unexpired idle VM resource for processing divided multiple subtasks in 474 

parallel. However, the three revenue-aware algorithms only focus on leasing certain type instances 475 



to maximize revenue without considering resource reuse, and thus lead to lower utilization rate 476 

(approximately 31%, 35% and 45%, on average). It should be noted that the VM utilization rate of 477 

our proposed approach is the average value of the utilization rate of three instance types. 478 

 479 

Figure 6 VM utilization 480 

5.3.3 Comparison on operational profit 481 

Fig 7 indicates that the proposed approach CSRSGA enables the SaaS provider to achieve more 482 

profit than other algorithms. On the one hand, the three revenue-aware algorithms intend to lease 483 

more instances to finish every request. As a result, the SaaS provider can maximize its revenue 484 

without incurring any penalty, but pay much more resource rental cost, which can be seen from 485 

Figure 5. On the other hand, due to taking no account of resource reuse, the VM instance 486 

utilization rate is significantly low compared to CSRSGA, which can be observed from Figure 6. 487 

Moreover, in the On-Demand provision pattern, the infrastructure vendor charges SaaS providers 488 

for leasing VM instances only based on the type and number of leased instances regardless of VM 489 

utilization rate. Therefore, all these factors make these revenue-aware algorithms’ operational 490 

profits are lower than that of CSRSGA. 491 

The goal of our proposed CSRSGA is also to maximize the profits of SaaS providers, but it 492 

aims to increase profit by reducing the resource rental cost instead of maximizing revenue. Taking 493 

into consideration the divisibility of user requests and the pricing model of On-Demand instances, 494 

CSRSGA makes full use of idle VM instances in the valid resource pool to achieve optimal 495 

subtasks dispatching. This may bring some penalties to SaaS providers, because of the fact that the 496 

finishing time of certain requests is greater than the mbdt  constraint. However, the number of 497 

initiated VM instance is dramatically reduced and the VM utilization rate is significantly improved. 498 

In other words, our proposed CSRSGA balances operational revenue and resource rental cost, and 499 

hence achieves more operational profit compared with other revenue-aware algorithms. 500 

 501 

Figure 7 Operational profit 502 

5.3.4 Comparison on RRI 503 



From Figure 8, we can see that CSRSGA outperforms greatly the alternative algorithms in RRI, 504 

which was mainly derived from the cost savings resulting from high VM utilization. Therefore, 505 

our proposed scheduling approach is more attractive to SaaS providers. 506 

 507 

Figure 8 RRI 508 

To sum up, the simulation experiment results show that CSRSGA provides a more 509 

cost-effective solution for user service request scheduling, and hence verify its effectiveness. 510 

6. Conclusion 511 

SLA is the focus of users’ attention, and earning profit is the principal driving force for SaaS 512 

providers. In order to satisfy the benefits of both SaaS providers and end users, it is of importance 513 

to design a cost-effective user service request scheduling algorithm in cloud computing scenario. 514 

To deal with this problem, we first establish a user request model under SLA constraints, and then 515 

present a cost-aware service request scheduling approach CSRSGA, which takes the divisibility 516 

feature of user requests and dynamic resource reuse into consideration. It can identify the most 517 

profitable VM combination of the valid resource set using genetic algorithm to achieve optimal 518 

subtask dispatching in reasonable time, and thus maximizes the operational profits of SaaS 519 

providers without violating any SLA constraint. The experiment results indicate that our proposed 520 

CSRSGA is superior to the alternative revenue-aware algorithms and provides a cost-effective 521 

solution for cloud service request scheduling. 522 

In building on the research undertaken in this paper in the future, we will investigate the 523 

cost-aware service request scheduling problem taking into account user satisfaction and SLA 524 

negotiation process in cloud computing environment. In addition, we plan to consider other pricing 525 

strategies such as Amazon spot pricing for maximizing a SaaS provider’s profit. 526 

Acknowledgements 527 

The work is supported by the NSFC (61272521), NSFC (61202435), SRFDP (20110005130001),  528 

FIRGNNSFC (61121061), NCET (100263), BMNSF (4132048) and CPSF (2011M500226). 529 

References 530 

[1] Armbrust, M., et al. (2010) A view of cloud computing. Communications of the ACM, 53, 50-58. 531 

[2] NIST Special Publication 800-145. (2011) A NIST definition of cloud computing. National Institute of 532 

Standards and Technology, Gaithersburg, MD 20899-8930, USA. 533 



[3] Hajjat,M., Sun, X., Sung, Yu-Wei. E., Maltz, D. and Rao S. (2010) Cloudward Bound: Planning for 534 

Beneficial Migration of Enterprise Applications to the Cloud. Proceedings of SIGCOMM 2010, New Delhi, 535 

India, Aug 30-Sep 3, pp. ~243-254. ACM, NewYork. 536 

[4] S.C. Yu, C.,Wang, K. Ren, and W.J., Lou. (2010) Achieving Secure, Scalable, and Fine-grained Data Access 537 

Control in Cloud Computing. Proceedings of INFOCOM 2010, San Diego, CA, USA, 15-19 March, 538 

pp.~534-542. IEEE, Piscataway, NJ. 539 

[5] J.C., Chen, C., Wang., B.B., Zhou, L. Sun, Y. C., Lee and A. Y. Zomaya. (2011) Tradeoffs between Profit 540 

and Customer Satisfaction for Service Provisioning in the Cloud. Proceedings of HPDC 2011, San Jose, 541 

California, USA, 8-11 June, pp.~229-238. ACM, NewYork. 542 

[6] Y.C., Lee, C., Wang, A. Y., Zomaya and B. B., Zhou. (2012) Profit-driven scheduling for cloud services with 543 

data access awareness. J. Parallel Distrib. Comput. 72, 591-602. 544 

[7] NIST Special Publication 500-292. (2011) NIST Cloud Computing Reference Architecture. National Institute 545 

of Standards and Technology, Gaithersburg, MD 20899-8930, USA. 546 

[8] M., Mao, Humphrey, M. (2011) Auto-Scaling to Minimize Cost and Meet Application Deadlines in Cloud 547 

Workflows. Proceedings of SC 2011, Seattle, Washington, USA, 12-18 November, pp.~1-12. ACM, 548 

NewYork. 549 

[9] Sherwani1, J., Ali, N., Lotia1 N., Hayat, Z. and Buyya, R.(2004) Libra: a computational economy-based job 550 

scheduling system for clusters. Softw. Pract. Exper, 34, 573-590. 551 

[10] Vanderster, D.C., Dimopoulos, N.J., Rafael P.H. and Sobie, R.J. (2009) Resource allocation on computational 552 

grids using a utility model and the knapsack problem. Future Generation Computer Systems, 25, 35-50. 553 

[11] Popovici, F.I. and Wilkes, J. (2005) Profitable services in an uncertain world. Proceedings of SC 2005, Seattle, 554 

Washington, USA, 12-18 November, pp.~36. IEEE, Piscataway, NJ. 555 

[12] Bonvin, N., Papaioannou, T.G. and Aberer, K. (2011) Autonomic SLA-driven Provisioning for Cloud 556 

Applications. Proceedings of CCGrid’2011, Newport Beach, CA, USA, 23-26 March, pp.~434-442. IEEE, 557 

Piscataway, NJ. 558 

[13] Wu, L.L., Garg, S.K., Buyya, R. (2011) SLA-based Resource Allocation for Software as a Service Provider 559 

(SaaS) in Cloud Computing Environment. Proceedings of CCGrid 2011, Newport Beach, CA, USA, 23-26 560 

March, pp.~195-204. IEEE, Piscataway, NJ. 561 

[14] AuYoung, A., Grit, L., Wiener, J. and Wilkes, J. (2006) Service contracts and aggregate utility functions. 562 

Proceedings of HPDC 2006, Paris, France, 19-23 June, pp.~119-131. IEEE, Piscataway, NJ. 563 

[15] Zhu, Q. and Agrawal, G. (2010) Resource Provisioning with Budget Constraints for Adaptive Applications in 564 

Cloud Environments. Proceedings of HPDC 2010, Chicago, Illinois, USA, 20-25 June, pp.~304-307. ACM, 565 

NewYork. 566 

[16] J. Berlińska, M. Drozdowski. (2011) Scheduling divisible MapReduce computations. J. Parallel Distrib. 567 

Comput., 71, 450-459. 568 

[17] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary Cost-Aware Checkpointing and Migration on 569 

Amazon Cloud Spot Instances. IEEE Transactions on Services Computing, 5, 512-524. 570 

[18] Garg, S.K., Yeo, C.S., Anandasivam, A, Buyya, R. (2011) Environment-conscious scheduling of HPC 571 

application on distributed cloud-oriented data centers. J. Parallel Distrib. Comput., 71, 732-749. 572 

[19] Omara, F.A., and Arafa, M.M. (2010) Genetic algorithms for task scheduling problem. J. Parallel Distrib. 573 

Comput., 70, 13-22. 574 


